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Steady incompressible flow past an aerofoil with a cavity in its upper surface is
considered. The aerofoil and cavity shape is constructed to ensure that the high-
Reynolds-number asymptotics of the flow is described by the Batchelor model.

1. Introduction

The purpose of this study is twofold: to construct a non-trivial steady flow of
an incompressible fluid such that its high-Reynolds-number asymptotic structure is
described by the Batchelor model, and to obtain (at least) a preliminary understanding
of how to design an aerofoil with a vortex cell (or a trapped vortex) contained within
it in order to enhance its aerodynamic characteristics.

The famous Batchelor (1956) model was proposed as a hypothetical structure of
the high-Reynolds-number limit of a steady flow past a bluff body. The true structure
was found much later (Chernyshenko 1988) and turned out to be different. However,
there are many papers describing calculations of various vortex-potential flows, that
is inviscid flows formally corresponding to the Batchelor model, but with parameters
prescribed arbitrarily instead of being determined by analyzing the viscous flow in the
limit as Re — oo. So far, however, there have been no rigorous examples of non-trivial
flows with the high-Reynolds-number asymptotics of the Batchelor-model type. Such
an example, apart from its beauty, would be useful for theoretical fluid dynamics
because it would improve our understanding of separated and recirculating flows.

The idea of using trapped vortices for enhancing the performance of aerofoils
and other devices is much less well known within the academic community than the
Batchelor model (and vice versa within the engineering community, see the review of
Wu & Wu 1992). This idea is illustrated by figure 1. If the aerofoil in the figure has no
cavity then the dividing streamline is just a section of the rigid wall but then the bound-
ary layer would separate on this section, resulting in a massive eddy with the usual con-
sequences for the performance characteristics. However, this does not happen because
there is a vortex cell. We may say that the dividing streamline effectively acts as a mov-
ing wall preventing the separation. At first glance it seems that a practical application
of this idea is impossible because the flow shown in figure 1 is unstable: a vortex form-
ing in the cavity will be (periodically or chaotically) shed downstream, with a new vor-
tex generated in its stead. Such a behaviour agrees with the current understanding of
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FiGure 1. Airfoil with a trapped vortex. (Vortex-potential flow streamlines are shown. Angle of
incidence 0.06, eddy vorticity —20, Bernoulli-constant jump 0.53.)

fluid flow stability and is observed in most experiments. There are, however, a few ex-
periments supporting this idea (Wu & Wu 1992), including flight tests in which the lift
coefficient was reportedly four times the value characteristic for wings of conventional
design, while the lift-to-drag ratio was the same. However, an attempt to reproduce
this result in a wind tunnel was not successful: the flow was unstable (Kruppa 1977).

Recently successful flight tests of a model of the aircraft EKIP, designed by L.
Shchukin (Savitsky et al. 1995), were performed. The body of this aircraft has the
shape of a thick wing (thicker than in figure 1) with four vortex cells (cavities) on
the downstream portion of the upper surface. The cells are small compared with the
wing chord but much bigger than the thickness of the oncoming turbulent boundary
layer, so that the flow structure may be expected to be similar to that considered in
the present paper. Unlike our analysis, in Shchukin’s aircraft there are central bodies
inside the cells, so that the flow region inside a cavity forms a ring. Probably, this
makes the flow more stable with respect to large-scale vortex shedding. Suction is
used to prevent secondary separation in the downstream cells.

Generally, most experiments on trapped vortices have been unsuccessful, so to
utilize this idea the shape of the aerofoil and the cavity must be very carefully chosen.
On the other hand, as the high-Reynolds-number asymptotics of a flow past a bluff
body is usually not of the Batchelor-model type, to construct a flow with the limit
as Re — oo of that type, the body shape must also be carefully chosen. The similarity
between the two problems becomes even more evident if we notice that the general
structure of a flow with a trapped vortex corresponds to the Batchelor model. This
explains why we have chosen a flow with a trapped vortex as the flow for which we
attempt to construct the Batchelor-model-type asymptotics. It is important to note
that our approach is an inverse one: instead of looking for the asymptotics of a flow
past a given body, we construct the body for a given asymptotic structure of the flow.

The following analysis is restricted to the limit as Re — oo of steady solutions
of the Navier—Stokes equations describing a plane flow of incompressible fluid. The
relationship between the results obtained and realistic turbulent flows is discussed
in §4 only. We consider the case of a tangential injection from the aerofoil into the
cavity, because if no injection or suction is used to prevent secondary separation in
the cavity then the airfoil with a trapped vortex has to be quite thin, and the cavity
small and almost circular (see below), and, hence, not good for illustrative purposes.

2. Asymptotic theory
2.1. Problem formulation
Let u = u(x, Re), p = p(x, Re) be a solution of the following boundary value problem
for the steady Navier—Stokes equations:
u-Vu=—Vp+ (1/Re)Vu,
Veu=0, (2.1)

ulr = u,, u|\x|—>oo = Uy,
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where I' is the body surface, u, is the injection velocity, and Re is the Reynolds
number. Then the problem is to find a shape of the body surface I' (aerofoil with a
cavity shape) and, optionally, the injection velocity distribution, such that the limit
of u(x,Re), and p(x, Re) as Re — oo is described by the Batchelor model. The flow
structure itself should also be found in this limit.

This means that as Re — oo the flow must be inviscid apart from certain regions, at
least one of whose dimensions tends to zero as Re — oo (such as in a boundary layer).
Moreover, outside the region of closed streamlines the flow must be potential, whilst,
by the Prandtl-Batchelor theorem, the vorticity must be constant inside the closed
streamline region. There may be a discontinuity of the Bernoulli constant across the
boundary of this region. Let ¥ and w be a stream function and vorticity respectively.
Then the limiting flow is a solution of the following problem:

VY =0 outside the eddy,
V?¥ = —w = const inside the eddy,
(V¥)|p—otr — (V¥)*|p—o— = 2[H] = const along the eddy boundary,
Pl =0, VX (VK)o = uy.

(2.2)

Here, k£ is a unit vector perpendicular to the flow plane. Note that there is no
injection in this problem since for our purposes it is sufficient to inject fluid inside the
boundary layer, with the flow rate of the same order of magnitude as the flow rate in
the boundary layer, that is tending to zero as Re — oco. Naturally, such an injection
does not affect the formulation of the problem for the external inviscid flow.

2.2. Basic properties of vortex-potential flows

A vortex-potential flow is an inviscid flow satisfying (2.2) whether or not it is the true
high-Re limit of the corresponding viscous flow. We will consider the case when there
is just one closed streamline region. Numerous studies of vortex-potential flows show
that in the general case, for a given body shape, there is a two-parameter family of
vortex-potential flows. This is not proved rigorously in the general case, but is rather
a conclusion of many studies of particular cases, simplified formulations, and full
numerical computations. Some references can be found in Bunyakin, Chernyshenko
& Stepanov (1996), which describes the method of constructing vortex-potential flows
used in our study. The eddy vorticity w and the Bernoulli constant drop across the
eddy boundary [H], for example, can be used as the parameters of the family. In that
case the location of the separation and reattachment points can be found from the
solution. It is more natural, however, to prescribe the position of the separation point,
because if the body surface has a corner point then separation occurs there. With the
location of the separation point fixed, there is only one free parameter. There is an
essential difference between vortex-potential flows in general and the Batchelor-model
flow. It is reasonable to assume that for a given problem there is only one, or at the
most a finite number of limiting flows as Re — oo, but not a one- or two-parameter
family. Therefore, the Batchelor-model flow is one of the vortex-potential flows which
is the true limit of the viscous flow as Re — oo. Mixing notions may sometimes result
in misunderstanding.

In constructing asymptotic solutions as Re — oo the pressure distribution along the
body surface plays an important role. The boundary layer may separate from a portion
of the body surface with an unfavourable pressure gradient at a point not implied
by the general structure of the vortex-potential flow. It appears that vortex-potential
flows without a portion of adverse pressure gradient upstream of the separation point
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are rare. If the flow velocity inside the eddy equals zero at the separation point of the
external flow (and this is the case if separation occurs at a corner of non-zero angle or
from a smooth surface, that is unlike in figure 1) then the pressure distribution near
the separation point is similar to that in a flow with a free streamline with a constant
pressure, that is both the curvature of the dividing streamline and the pressure
gradient tend to infinity as the separation point is approached along the streamline
from downstream and upstream respectively. For flows in cavities (Herwig 1982) and
for a flow past a backward-facing step (Chernyshenko 1984) it was shown that this
infinite pressure gradient is unfavourable. Moreover, Chernyshenko (1984) showed
that in a symmetrical vortex-potential flow past a body, the existence of a section of
the body surface with an unfavourable pressure gradient upstream of a separation
point is the rule rather than an exception.

It is natural to locate a vortex cell on the aerofoil in such a way that the portion of
the upper wing surface with an unfavourable pressure gradient becomes a boundary
of the vortex cell (as this is expected to prevent a massive separation). It seems
possible to find a shape of the cavity such that the vortex-potential flow decelerating
along the dividing streamline will then only accelerate along the cavity wall, so that
everywhere on the rigid wall the pressure gradient will be favourable. Unfortunately,
there are no such cavity shapes. Consider an inviscid flow in a closed streamline
region. As the fluid density is constant, the total momentum and angular momentum
of the fluid in the eddy are equal to zero and do not vary with time, although this
fluid volume is under the action of pressure forces at the boundary. Therefore, the
total force and the total moment of force with respect to an arbitrary point are equal
to zero. This can be written in the following form:

fpr dr = fprgz ds =0, (2.3)

where the integral is taken over the eddy boundary, p is the pressure, and r is the
distance to a point O (so far undefined), with respect to which the moment of force is
calculated. Suppose that there is only one point of minimum pressure and one point
of maximum pressure on the contour and that a circle can be drawn through these
points without other intersections with the eddy contour. This is always possible for
a convex contour and for many other contours of a not too complicated shape. Let O
be the centre of this circle and rq its radius. Then the product (dp/ds)(r? — r3) does
not change sign on the contour. After simple transformations we obtain

or. _ [1? =) s s op] f(rhr&)ap
pranS—]{z [ s (r ro)65 ds = 5 aSds#O. (2.4)

The contradiction between (2.3) and (2.4) proves that the initial assumption cannot
be valid. Numerical calculations also show that there are at least two pressure minima
and maxima.

2.3. Restrictions on the position of the viscous separation point

In an inviscid flow the position of the separation point can be prescribed arbitrarily
to a certain extent. However, analysis of a viscous flow close to the separation point
shows that if the inviscid flow is the high-Re limit of a viscous flow then the position
of the separation point satisfies additional conditions. Such a local analysis leads to
various versions of the widely known theory of viscous—inviscid interaction. Extensive
information on this theory can be found in the book by Sychev et al. (1987). There
are three possibilities: separation can occur at a corner point, or at a point on a
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smooth surface where the condition of a smooth separation, that is the Brillouin—
Villat condition, is satisfied or at an upstream-directed sharp edge. In all these cases
the separation point in the viscous flow is downstream from its limiting position
and moves upstream as the Reynolds number tends to infinity. Generally, in an
inviscid flow upstream of the separation point dp/ds = k(s)/(so — s)"/> + ..., where
s is a coordinate measured in the flow direction, and s = s is the separation point.
If k(sp) > O then the boundary layer will separate upstream from the separation
point of the inviscid flow, which is clearly inconsistent. Hence, inviscid flow with
k(sg) > 0 can be a high-Re limit of a viscous flow only if there is no boundary
layer upstream from the separation point. This is the case if separation occurs
from an upstream-directed sharp edge, as described by Sychev (1978). If k(so) < O
then separation can occur at a corner point (Ruban 1974, 1976) but not from a
smooth surface because in the latter case the dividing streamline would penetrate
the body surface. A self-consistent, local viscous structure near the separation point
on a smooth surface (Sychev 1972; Smith 1977) exists only if in the inviscid flow
k(so) = 0.

Therefore, a local analysis of viscous effects reduces the number of free parameters
of the vortex-potential flow either by fixing the separation point at a corner or an
edge or by giving the additional condition k(sy) = 0. As the analysis resulting in these
restrictions remains valid for w = 0, it is sometimes said that it gives the value of [H],
keeping in mind, of course that in fact w and [H] can be found only simultaneously.

2.4. Formulation of the problem of a cyclic boundary layer

Suppose that the solution of (2.2) is known. Then the boundary layer on the body
surface must be calculated. The boundary layer begins at the forward stagnation
point and continues to the separation point, and on the lower surface of an aerofoil
to the trailing edge. There is also a boundary layer on the cavity wall. Near the
dividing streamline there is a mixing layer which is also governed by the boundary-
layer equations. Finally, there is a boundary layer between the reattachment point
and the trailing edge on the upper surface. In the general case the boundary-layer
approximation becomes invalid near the separation and reattachment points, where
new distinguished limits in the so-called turn regions must be introduced. It turns
out, however, that the flows in the boundary layers pointed out above can be
matched through the turn regions without analysing these regions in detail. The
reason is that inside the regions with one dimension much larger than the other
the boundary-layer equations remain valid, as can be checked with the heuristic
principle of Kaplun (Cole 1968), so that only the distinguished limits in the regions of
equal longitudinal and transverse dimensions need be considered. Let us estimate the
characteristic Reynolds number in such regions. The characteristic flow rate inside
these regions is the same as in the boundary layer: Q,,, ~ Re™'/? (all parameters are
already non-dimensionalized with the velocity at infinity and characteristic size of the
body). Correspondingly, the characteristic Reynolds number Re,;, ~ UypnLyyrnRe ~
QumRe ~ Re'”? — oo, Hence, in the leading term the flow inside the turn region is
effectively inviscid. Therefore, the Bernoulli theorem holds true there. If the boundary-
layer equations are solved in Mises variables, using ¢ = u?/2 + p as the dependent
variable, where u is the velocity, and the stream function v as the independent
variable then the existence of the turn regions can be just ignored (Matveeva &
Neiland 1977; Neiland & Sychev 1966). This is of course valid also for the case
shown in figure 1 when at the separation and reattachment points the body contour
forms cusps.
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FIGURE 2. Velocity as a function of y in the cyclic layer. The picture is stretched vertically for a
better view. Velocity and stream function scales are 0.05 and 0.003 respectively. The blowing flow
rate equals 0.6 at each of the points shown with arrows (s = 0.65, 0.71, and 0.74). The blowing
stagnation pressure is 0.77 (at infinity the velocity is equal to 1 and the stagnation pressure is zero).

The boundary layer between the forward stagnation point and the separation point
can be calculated in the usual way. This gives the velocity, and, hence, the g = go(y)
profile immediately upstream of the separation point. Let us introduce a coordinate
system s,n with the origin at the separation point S, with s measured clockwise
along the dividing streamline and the cavity wall, and n increasing outward from
the eddy (figure 2). We denote the reattachment point coordinate as sg. The sep-
aration point is at s = 0 and sg is the length of the contour SR123S (figure 2).
Points of tangential injection 1, 2, and 3 are at s, s;, and s;. The injection flow
rate Re"/2Q and the stagnation pressure g; of the injected fluid are assumed to
be the same for all the injection points. (As mentioned above, the injection is in-
troduced in this work in order to improve the external appearance of the aerofoil
obtained. For this reason no systematic study of the influence of these parame-
ters was made.) We introduce a stream function y scaled to be of order one in a
boundary layer, so that the longitudinal velocity u = Re~"/20y/0n. Then the bound-
ary value problem for the cyclic boundary layer can be written in the following
form:

2
% _, 7%
0s op?
matching with oncoming layer,
s =0,y >30, g(0,) = g(v),
periodicity condition,
s =0, p <30, g(0,) = glss, p),
no-slip condition,
SR <s<si, g(s,0)=p(s), (2.5)
sp<s<s2 g(s,0)=p(s),
2 <8 <s3 g(5,20) =p(s),
s3 <5 <ss, g(s,30) = p(s),
injection condition,
s=si, (=10 <y <iQ, g(sip) =g, i =123,
uniqueness condition,
lim,__, g(s,p) < o0.

We denote G, = lim,_,_ g(s,y). From (2.5) it follows that G., does not depend
on s.
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2.5. Properties of the boundary value problem

Boundary value problems of this type are well studied (Chernyshenko 1982, 1984,
1991), although rigorous results were obtained for a heat diffusion equation only
(Kolosov & Shifrin 1975). If the solution of (2.5) with G,, < oo exists for a given
pressure distribution then it will be unique. Importantly, for uniqueness G, need not
be prescribed, but instead can be determined as part of the solution. This closes
the problem of constructing the entire asymptotic structure. Indeed, the matching
condition between the cyclic boundary layer and the vortex-potential flow requires G,
to be equal to the stagnation pressure p. on the outermost closed streamline in the
inviscid flow (p. + [H] is the stagnation pressure in the potential flow outside of
the eddy). For a given body shape the vortex-potential flow and, hence, the pressure
distribution are uniquely determined by two parameters [H] and w. Therefore, for
given values of these parameters, it is possible to solve (2.2) and then (2.5) to
obtain G, = G ([H], w, Q, g;). The matching condition takes the form

Go([H], 0, Q,81) = p-. (2.6)

As has already been explained, if the flow satisfies a local condition at the separation
point, whether it is the Brillouin—Villat condition or the fixed position condition, [H]
and w are not independent. Hence, for Q and g; given, (2.6) is an equation with just
one unknown. The fact that analysis of a cyclic layer makes it possible to determine
one parameter was demonstrated with a simple example by Squire as early as 1956.

It is, however, possible that (2.5) has no solution at all. If the unfavourable pressure
gradient in a cyclic layer is sufficiently large, then a singularity appears in the solution
indicating that there is a secondary separation. In particular, it was discovered in
numerical calculations and then proved theoretically (Chernyshenko 1991) that a
secondary separation is inevitable if the inviscid flow inside the eddy has a stagnation
points on its boundary, and even in cases when this takes place at the reattachment
point only. The idea of the proof involves the fact that g(s,y) approaches G, with
decaying oscillations as p — —oo, so that for each s there is a value of y for which
the velocity in the cyclic layer is strictly less that its value at p = —oo. Hence, if
that value at infinity approaches zero, as is the case at a stagnation point, then
somewhere upstream of it the velocity will become zero at some point inside the
layer, thus developing a singularity. This means that the external inviscid flow should
be modified by introducing another separation region. However, the same reasoning
applies to the boundary layer surrounding this secondary eddy, and so on. Therefore,
there should be an infinite number of nested eddies, although such a flow cannot
be described by the Batchelor model. Note that the secondary separation described
by this mechanism appears within the bulk of the boundary layer but not at a wall.
Of course, an unfavourable pressure gradient on the cavity wall can also result in a
secondary separation in the usual way.

2.6. Summary of requirements for the body shape

Therefore, to design a body the flow past which has a Batchelor—model asymptotics,
it is necessary to:

1. choose the body shape so that there is no strong unfavourable pressure gradient
upstream of the separation point, in order to prevent premature separation;

2. provide for separation and reattachment at cusps, in order to prevent secondary
separation in the bulk of the cyclic layer near the stagnation points of the inviscid
flow;
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3. make the cavity almost circular or use other means (for example, blowing or
suction) in order to prevent secondary separation from the cavity wall.

3. Numerical calculations
3.1. Notes on numerical calculation of cyclic boundary layers

A detailed description of the particular computational method is outside the scope
of this paper.

Most often the characteristic thickness of an ordinary boundary layer grows mono-
tonically downstream. However, in the case of a cyclic layer this thickness is a periodic
function of the longitudinal coordinate. As the velocity of the external inviscid flow
decreases, the cyclic layer thickness grows and vice versa. These variations may be
quite large if the cyclic layer is on the verge of separation, which is almost always the
case. For this reason it is much more convenient to perform a calculation in the Mises
variables s and y. Then variation of the external flow velocity does not cause large
variations of the thickness, because in these variables the characteristic thickness is in
fact the characteristic flow rate in the layer. However, the advantage of using a com-
putational domain of constant width is counterbalanced by increased requirements
on the speed and memory size of the computer, for the following reasons.

Some caution is needed for the finite-difference approximation of equations (2.5) in
the case when the boundary layer is bounded by a wall where the no-slip condition
is imposed. In this case g as a function of y is singular at the wall, and a usual
finite-difference approximation of the second derivative is invalid. We overcame this
difficulty by representing g(s,y) on the grid s;p;, but approximating derivatives on
the corresponding grid in the (s,n)-plane, where n is the coordinate normal to the
wall. In the case of constant steps in s and p (Ap = ;41 — p;, As = s, — s;) and
implicit approximation of the second derivative this approach gives the following
finite-difference equation:

&itlj — 8ij _ (“i,j+1 + Mi,j)(ui,j + Mi,j—l) Zi1jr1 — 28ir1j + Giv1j—1
As Ui jr1 + 2 j + Ui j (Ay)?

(3.1)

This equation was used to obtain the numerical results presented in this paper. In
other calculations (not given here) we have used variations to this approach for the
case of a non-uniform grid and an explicit-implicit scheme of higher order in As.

For smooth solutions equation (3.1) gives second-order accuracy in Ay and first
in As. However, near the wall and the points where derivatives are not continuous (in
a cyclic layer these are the separation, reattachment and injection points, because the
boundary conditions are not continuous there) the order of approximation is reduced.
In practice (see the analysis of the approximation of the particular computation below)
the order of approximation is (Ay)'/?, (As)'/?. As there are several reasons for the
reduction in the order of approximation, improving it requires more complicated
schemes. Although this decreases the time of a single computation, time spent on
developing a program and determining the optimal parameters (for example, of a
non-uniform grid) increases, so that on the whole the simplest scheme (3.1) turns out
to be the most advantageous.

Equation (3.1) can be solved by marching methods stepping in s. However, the
problem (2.5) does not contain all the necessary initial conditions. Instead there
is a periodicity condition at s = 0, s = sg. For this reason iteration is necessary:
prescribing g(0,v), we proceed with a marching method to s = sg, use the calculated
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profile of g(ss, ) as the new approximation for g(0,) and repeat this procedure until
convergence. This procedure can be considered as a result of a periodic continuation
of the computational domain to infinity downstream. Convergence then means that
the solution should become independent of the initial conditions. It is clear now that
if the computational domain were infinite not only in s, but also in the direction of
decreasing 1, as is the case in (2.5), then there would be no convergence, or, more
exactly, the convergence would be non-uniform: for a finite y given, g(s,y) would
approach the solution of (2.5) as s — oo, but for a finite s given g(s,y) would not
approach the solution of (2.5) as yp — —oo but would tend to a value determined by
the upstream initial conditions. Therefore, the larger the computational domain the
larger the number of iterations needed to achieve convergence. On the other hand
decreasing the width of the computational domain increases the error caused by the
replacement of an infinite region with a finite one. For this reason iterations in a cyclic
boundary layer converge slowly, and the larger the computational domain the slower
the convergence. As a result, the iteration should not be stopped by the criterion of
a small difference in the solution on two successive iterations. Instead, special criteria
valid for slowly converging iterations must be used.

The width of the computational domain is determined, as usual, through test
calculations, and is increased until the solution ceases to vary within the prescribed
accuracy. Here, however, the following should be taken into account. The finite-
difference scheme (3.1) is non-conservative. In general, it is difficult to construct a
finite-difference scheme in Mises variables which would be conservative with respect
to momentum. Hence, the approximation error may manifest itself as some additional
force with a non-zero total effect in the boundary layer. In order to understand the
result of this, assume for simplicity that this additional force is proportional to the
velocity in the boundary layer. Then, taking into account the additional term, the
principal equation in (2.5) takes the form

0g 0*g

s = uw — Clu.

The value of C; tends to zero as the grid size tends to zero. In the general case,
as p — —oo the periodic solution of this equation takes the form

g(s,p) = G, + Coyp + Crp?/2.

The constraint lim,_, . g(s,y) < oo needed for the uniqueness of the solution
means that in the solution sought C, = 0. In a numerical computation this can
be achieved by imposing dg/dyp = 0 at the base of the computational domain. If
convergence is achieved, G, is determined to be equal to the value of g(s,y) at
the base of the computational domain, and the condition that this value is equal
to the corresponding value on the outer-most closed streamline of the inviscid flow
can be used, as described in previous sections, for determining a parameter of the
vortex-potential flow family. If, however, C; # 0 then g(s,y) at the base of the
computational domain will not tend to a finite limit as the width of the domain tends
to infinity. Therefore, before determining the width of the computational domain the
convergence with respect to the grid size should be achieved (that is C; should be
made sufficiently small).

Instead of imposing dg/dy = 0 at the base of the computational domain it is
better to prescribe g to be equal to the corresponding value in the inviscid flow and to
use the condition dg/dyp = 0 to determine the parameter of the vortex-potential flow
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FiGure 3. Skin friction and potential flow velocity. Near the trailing edge and over most of the
lower surface (not shown) the velocity is constant. The cavity is between the arrows. The abscissa
is measured clockwise from the trailing edge.

family. The rigid boundary condition makes the iterations in a cyclic layer converge
faster.

3.2. An example of a calculation
An aerofoil is designed in several steps.

Step 1. The calculation starts from determining the aerofoil and dividing stream-
line shape. This was carried out using the code POLET developed in the Institute of
Mathematics and Mechanics of the Kasan‘ State University (Russia). This code solves
the inverse problem of a potential flow past an aerofoil. It allows us to prescribe a
desirable velocity distribution and to obtain an aerofoil with the velocity distribution
as close to that prescribed as possible. Moreover, it is possible to obtain exactly
the prescribed velocity distribution on a portion of the aerofoil. Using this code we
constructed an aerofoil for which the velocity quickly grows from the stagnation point
to certain values on the upper and lower surface. Over the rest of the lower surface
it then remains constant. On the upper surface the velocity is also constant upstream
of some point (which then will be converted into a separation point by introducing a
cavity), then smoothly decreases to the value of the velocity on the lower surface and
remains constant over the rest of the upper surface. This velocity distribution was
already close to the final distribution shown in figure 3. This approach ensures that
there will be no separation outside the portion where the cavity will be introduced.
The code pOLET gives the aerofoil shape as an array of points. This representation
was used for further calculations, with the aerofoil shape between points described
by a cubic spline, as in Bunyakin et al. (1996).

Step 2. The portion of the aerofoil surface at which the pressure gradient is
unfavourable is fitted with a portion of parabola, which will later become the dividing
streamline. A parabola can be described by an explicit expression, and this is necessary
for further construction of the cavity. The end points of this portion now become
corner points of the aerofoil contour, although the angles are quite close to 2. Hence,
the oncoming boundary layer will separate upstream of the first of these points.
Moreover, when the cavity is constructed, instead of cusps at the beginning and the
end of the cavity there would be corner points, which are undesirable (see above).
For this reason the aerofoil shape was further modified just outside that portion of
the parabola: the nearest points determining the aerofoil shape were shifted manually
in such a way that the aerofoil contour smoothly transforms into the parabola.
This prevents separation, but results in small oscillations of higher derivatives of the
cubic spline which describes the contour between the fixed points. Eventually, these
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FIGURE 4. Inviscid flow velocity inside the cavity at the edge of the viscous layer.

oscillations lead to the velocity and friction oscillations in figure 3. Note that these
oscillations do not result from a numerical or approximation error. The accuracy of
the results presented here ensures that the error in the plots is less then the thickness
of the lines. The potential flow past the obtained aerofoil was then calculated. The
method described by Kuethe & Chow (1986) was used with two modifications. First,
the Gauss method was used to solve the system of linear equations instead of the
Cramer rule and, second, we used Tikhonov regularization (Tikhonov et al. 1990) to
enable the program to calculate flows past aerofoils with a sharp trailing edge. Then
the boundary layer between the stagnation point and the beginning of the cavity was
calculated. Figure 3 shows the results for the final version of the aerofoil and dividing
streamline shape. It can be seen that there is no premature separation.

Step 3. For given values of the drop in the Bernoulli constant across the dividing
streamline [H] and the vorticity w in the eddy, it is possible to find a cavity such that
the corresponding vortex-potential flow will coincide outside the eddy with the already
calculated potential flow outside. For this purpose, a known rotational motion with
the same w, for example a rigid-body rotation, is subtracted from the vortex-potential
flow, and the remaining potential flow is determined by analytic continuation from
the dividing streamline. The method is described in detail by Bunyakin et al. (1996).
Varying [H] and o makes it possible to obtain suitable velocity distributions on
the cavity wall. The final version is shown in figure 4. This velocity distribution has
two minima and, accordingly, two portions with unfavourable pressure gradients.
The first is immediately downstream from the reattachment point and is very short.
For this reason, although the skin friction drops sharply here, there is no secondary
separation. If w and [H] are changed so that this portion is longer then there could
be a separation. On the second portion with unfavourable pressure gradient, the
secondary separation was prevented by tangential injection.

The final aerofoil and cavity shape and the streamlines of the vortex-potential flow
are shown in figure 1.

Step 4. Finally, the cyclic boundary layer is calculated. As mentioned, in this
calculation we prescribe g, obtained from the calculation of the vortex-potential flow
(that is p.) as the boundary condition at the boundary of the computational domain,
which is turned toward the cavity (or, equivalently, at this boundary the velocity
in the boundary layer is prescribed to be equal to the velocity of the inviscid flow
in the cavity when this boundary is approached from within the cavity). Then as
a result of the calculation F = 0dg/dy on this boundary is determined. Now, the
matching condition (2.6) implies that F = 0 in a valid asymptotic limit as Re — co.
As F = F([H],w,Q,g;) we can fix any three of its arguments and find the fourth
by solving numerically the equation F = 0. In our case it is convenient to fix [H]
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FIGURE 5. Accuracy analysis: g; as a function of 100M~'/? for Ay = const (solid) and of
100(Ay)'/? for M = const (dashed).

and o because then we need not recalculate the vortex-potential flow when solving
the equation F = 0, and Q because this determines the shape of the computational
domain in the cyclic boundary layer.

Steps 3 and 4 may be unsuccessful: step 3 for the reasons explained in Bunyakin et
al. (1996) and step 4 because of a secondary separation. By trial and error, varying the
initial velocity distribution in step 1, the positions of the separation and reattachment
points in step 2, and [H], w, sy, S, 3, and Q, we finally obtained the self-consistent
result, presented in the figures in this paper.

Calculations of the cyclic layer were performed with various grids and computa-
tional domains in order to ensure that sufficient accuracy was obtained. The grid was
uniform in y and s. The base of the computational domain was at yp = —3. The top
was at p = 7 in the mixing layer (with y = 0 corresponding to the reattaching stream-
line), and at v = 0 in the boundary layer on the cavity wall before the first injection
point, and then the height of the top was increased by Q = 0.6 at each injection point.
The number of steps in s was 2M in the mixing layer, 2M between reattachment
and the first injection point, and M between injection points and between the last
injection point and the separation point. The most accurate of our calculations was
made with M = 4000 and Ay = 0.0005. Figure 5 shows the dependence of the most
sensitive quantity, namely the stagnation pressure g; of the injected fluid, on M~/2
and (Ay)'/2. The plots show a linear dependence giving the order of accuracy, which
may be approximated with the formula

g1 = 0.800 + 1.07M /2 — 0.557(Ay)"/?,

thus giving the value gy = 0.80 as the final result. We also tried to extrapolate
similarly the other results presented in the plots throughout this paper but it turned
out that the extrapolated plots were indistinguishable from those obtained from our
highest-accuracy calculation. Other parameters prescribed or obtained are: angle of
incidence 0.06, [H] = 0.53, @ = —20, sg = 0.346, ss = 0.863, s; = 0.65, s, = 0.71,
s3 = 0.74, and Q = 0.6.

Figures 6 and 7 show the velocity profiles at s = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 plotted against the transverse coordinate in the cyclic layer (unlike figure 2
where these were plotted against ). It is noticeable that in the bulk of the layer
the low-velocity areas are in a sense persistent and expand far downstream, after
departing from the wall at separation and injection points. As a result, if the vortex-
potential flow has regions of strong adverse pressure gradient, then a singularity
appears within a cyclic layer. For this reason it seems that for preventing secondary
separation suction may be more efficient than injection, because suction would remove
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FIGURE 7. Velocity profiles in the boundary layer on the cavity wall.

the low-velocity fluid from the flow. Although no systematic study of the influence
of numerous parameters in this problem was made, our experience suggests that
Batchelor-model-type asymptotics is a proper one only in a very limited region of the
parametric (initial aerofoil shape, [H], w, s, S», s3, and Q) space.

4. Concluding remarks

There are two different mechanisms by which a trapped vortex may inhibit separa-
tion. Suppose that a cavity is located upstream of the point where the flow separates
in the absence of the cavity. Then the velocity profile in the boundary layer will
become more filled above the cavity. In a sense this is equivalent to a downstream
shift of the beginning of the boundary layer which naturally shifts the separation
point downstream too. To implement this mechanism it is not necessary to locate the
cavity in the area of an unfavourable pressure gradient.

This shows that it is possible in principle to design an aerofoil with a trapped
vortex without blowing or suction preventing the secondary separation. Let us first
take an ordinary aerofoil the flow past which does not separate. Then let us increase
the angle of incidence to a slightly supercritical value, so that the flow is separated.
Then, by adding a small almost circular cavity with only a very small opening (very
short mixing layer) near the pressure minimum on the aerofoil surface upstream
of the marginal separation point it will be possible to prevent separation provided
that the overshoot of the angle of incidence over the critical value is sufficiently
small. In this case the pressure variation in the mixing layer, and, hence, in the
cavity, may be quite small, so that no secondary separation in the cavity should be
expected.

The second mechanism is a redistribution of the unfavourable pressure gradient
on a portion of aerofoil surface over a portion of the cavity surface. In that case the
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cavity is located in such a way that the fluid decelerates along the dividing streamline.
It should be noted that although a reversed flow is less likely to develop in a mixing
layer than in a near-wall layer nevertheless this cannot be always excluded, as is
clearly indicated by figure 1, where the velocity minimum decreases as s increases.
Also, as was proved in the end of §2.2, there should be portions of the cavity wall with
unfavourable pressure gradient so that suction or injection are likely to be necessary
to prevent secondary separation inside the cavity. Nevertheless, additional freedom
in the possible distribution of unfavourable pressure gradients over the walls may
be used to decrease the intensity of suction or injection. However, an assessment of
the practical effectiveness of these two mechanisms and their comparison with other
methods of preventing separation lay outside the scope of the present paper. In fact,
before such assessment can become possible methods of calculating turbulent flows
of this type should be developed.

The results presented here describe a non-trivial example of a steady flow the
high-Re asymptotics of which is described by the Batchelor model. They show in
detail the mechanisms and existence of such flows and demonstrate that such flows
are quite rare. Results obtained with asymptotic methods on the basis of the full
Navier—Stokes equations have the advantage of assured self-consistency and objec-
tiveness. In other words, due to the formal nature of the method there can be no
internal contradiction in the flow structure obtained, and this structure is indepen-
dent of the researcher’s preferences. This would not be the case if turbulence models
were introduced (and rejected) in the process of solution because the selection of the
turbulence model could be affected by the researcher’s intuitive idea about the flow
structure. However, as soon as a laminar asymptotic structure is found, certain steps
can be taken toward the description of the corresponding turbulent flow. Suppose
that a realistic turbulent flow with a trapped vortex does not exhibit a large-scale
unsteadiness, either due to specific geometry (as it probably is in the case of the
EKIP vehicle) or special measures such as imposed high-frequency oscillations or
both (see again Wu & Wu 1992). Then it may be possible to construct the flow
description by substituting a turbulent cyclic boundary layer for the laminar one
in our theory. This depends on whether the flow inside a trapped vortex (that is
stable on a large scale) is effectively inviscid. Although some indications support-
ing this possibility can be found in experiments (Koenig & Roshko 1985), further
experimental studies are necessary. The advantage of this approach is that it is
easier to develop turbulence models applicable in thin layers similar to the mixing
and boundary layers in our theory, than models applicable to the entire separated
flow.

Also, other qualitative results and suggestions, such as the unavoidable adverse
pressure gradient on the wall of a non-circular cavity, or the advantage of suction
over injection for preventing secondary separation, may be relevant to realistic flows.
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